AnandTech Storage Bench 2011

Two years ago we introduced our AnandTech Storage Bench, a suite of benchmarks that took traces of real OS/application usage and played them back in a repeatable manner. I assembled the traces myself out of frustration with the majority of what we have today in terms of SSD benchmarks.

Although the AnandTech Storage Bench tests did a good job of characterizing SSD performance, they weren't stressful enough. All of the tests performed less than 10GB of reads/writes and typically involved only 4GB of writes specifically. That's not even enough exceed the spare area on most SSDs. Most canned SSD benchmarks don't even come close to writing a single gigabyte of data, but that doesn't mean that simply writing 4GB is acceptable.

Originally I kept the benchmarks short enough that they wouldn't be a burden to run (~30 minutes) but long enough that they were representative of what a power user might do with their system.

Not too long ago I tweeted that I had created what I referred to as the Mother of All SSD Benchmarks (MOASB). Rather than only writing 4GB of data to the drive, this benchmark writes 106.32GB. It's the load you'd put on a drive after nearly two weeks of constant usage. And it takes a *long* time to run.

1) The MOASB, officially called AnandTech Storage Bench 2011 - Heavy Workload, mainly focuses on the times when your I/O activity is the highest. There is a lot of downloading and application installing that happens during the course of this test. My thinking was that it's during application installs, file copies, downloading and multitasking with all of this that you can really notice performance differences between drives.

2) I tried to cover as many bases as possible with the software I incorporated into this test. There's a lot of photo editing in Photoshop, HTML editing in Dreamweaver, web browsing, game playing/level loading (Starcraft II & WoW are both a part of the test) as well as general use stuff (application installing, virus scanning). I included a large amount of email downloading, document creation and editing as well. To top it all off I even use Visual Studio 2008 to build Chromium during the test.

The test has 2,168,893 read operations and 1,783,447 write operations. The IO breakdown is as follows:

AnandTech Storage Bench 2011 - Heavy Workload IO Breakdown
IO Size % of Total
4KB 28%
16KB 10%
32KB 10%
64KB 4%

Only 42% of all operations are sequential, the rest range from pseudo to fully random (with most falling in the pseudo-random category). Average queue depth is 4.625 IOs, with 59% of operations taking place in an IO queue of 1.

Many of you have asked for a better way to really characterize performance. Simply looking at IOPS doesn't really say much. As a result I'm going to be presenting Storage Bench 2011 data in a slightly different way. We'll have performance represented as Average MB/s, with higher numbers being better. At the same time I'll be reporting how long the SSD was busy while running this test. These disk busy graphs will show you exactly how much time was shaved off by using a faster drive vs. a slower one during the course of this test. Finally, I will also break out performance into reads, writes and combined. The reason I do this is to help balance out the fact that this test is unusually write intensive, which can often hide the benefits of a drive with good read performance.

There's also a new light workload for 2011. This is a far more reasonable, typical every day use case benchmark. Lots of web browsing, photo editing (but with a greater focus on photo consumption), video playback as well as some application installs and gaming. This test isn't nearly as write intensive as the MOASB but it's still multiple times more write intensive than what we were running in 2010.

As always I don't believe that these two benchmarks alone are enough to characterize the performance of a drive, but hopefully along with the rest of our tests they will help provide a better idea.

The testbed for Storage Bench 2011 has changed as well. We're now using a Sandy Bridge platform with full 6Gbps support for these tests.

AnandTech Storage Bench 2011 - Heavy Workload

We'll start out by looking at average data rate throughout our new heavy workload test:

Heavy Workload 2011 - Average Data Rate

Our heavy workload from 2011 illustrates the culmination of everything we've shown thus far: the M500 can even be slower than the outgoing m4. There's no doubt in my mind that this is a result of the tradeoffs associated with moving to 128Gbit NAND die. The M500's performance is by no means bad, but it's definitely below what we've come to expect from Intel and Samsung flagships.

Heavy Workload 2011 - Average Read Speed

Heavy Workload 2011 - Average Write Speed

The next three charts just represent the same data, but in a different manner. Instead of looking at average data rate, we're looking at how long the disk was busy for during this entire test. Note that disk busy time excludes any and all idles, this is just how long the SSD was busy doing something:

Heavy Workload 2011 - Disk Busy Time

Heavy Workload 2011 - Disk Busy Time (Reads)

Heavy Workload 2011 - Disk Busy Time (Writes)

Performance vs. Transfer Size AnandTech Storage Bench 2011 - Light Workload
Comments Locked

111 Comments

View All Comments

  • blackmagnum - Tuesday, April 9, 2013 - link

    How times have changed. SSDs now have better bang-for-the-buck than hard disk drives. No noise, low power, shock resistance... the works.
  • Flunk - Tuesday, April 9, 2013 - link

    That's not quantitatively true. 2TB hard drives are available for about $100 which is 0.05/GB no SSD can match that.

    SSDs have better power usage, performance, shock resistance but they lag in capacity.
  • ABR - Tuesday, April 9, 2013 - link

    Actually they tend NOT to have better power usage, at least when compared against 2.5" laptop hard drives. But everyone thinks they do anyway since it just seems like a purely electronic device should use less energy than a mechanical one.
  • akedia - Tuesday, April 9, 2013 - link

    I don't believe that's correct. Sure, sometimes, some SSDs in some usage scenarios might use more, but it's generally correct that SSDs use less power than even 2.5" HDDs. Below I've linked to recent (within the last year) StorageReview.com reviews for two current generation examples, the WD Scorpio Blue and the Samsung 840 Pro. The SSD beats the SSD on all measures other than writing, which over the course of time is unlikely to tip the scales, and even then they have to note that the system was tested in a desktop which didn't have DIPM enabled. So this is a worst-case for the SSD, without all of its power-saving features enabled, and it still comes out generally on top, while providing vastly superior performance on all measures.

    It's not true that ALL SSDs beat ALL HDDs at ALL times for ALL usages in ALL circumstances, but it's also not true that 2.5" HDDs have better power usage in general. They don't. And that's without even considering how much less time such a higher performing device would take to read or write a given amount of data, spending much less time out of power-sipping idle. Cheers.

    http://www.storagereview.com/western_digital_scorp...

    http://www.storagereview.com/samsung_ssd_840_pro_r...
  • akedia - Tuesday, April 9, 2013 - link

    *edit

    The SSD beats the HDD on all measures other than writing, it doesn't beat itself. *facepalm*
  • ABR - Tuesday, April 9, 2013 - link

    The SSD link you site, together with another review on Tom's Hardware, report
    very different values for power usage than most places I've seen. For example,
    here on Anandtech:

    http://www.anandtech.com/show/6328/samsung-ssd-840...

    Generally averaging 3-5 watts, whereas good HDDs are in the 1.5-2.5 range. It would be good to know the reason for the discrepancies. It does seem that smaller processes are starting to help the SSDs catch up though.
  • tfranzese - Tuesday, April 9, 2013 - link

    You do realize that SSD's can get their work done quicker and get back to idle much faster than any mechanical drive? Unless you're looking at a SSD that has horrible idle power characteristics there's little hope in hell for a HDD to compete as far as power efficiency goes.
  • ABR - Tuesday, April 9, 2013 - link

    What I realize is that there is a lot of hand-waving and warm fuzzy thinking in this area, but few hard numbers. The ones that I *have* seen tend to suggest SSDs are still catching up in power efficiency.
  • MrSpadge - Tuesday, April 9, 2013 - link

    +1

    Consuming about as much power (give or take a few 10%) for one or two orders of magnitude less task completion time results in one to two orders of magnitude less energy consumed to complete the task. And that's what really counts, for the wallet and the battery.
  • mayankleoboy1 - Wednesday, April 10, 2013 - link

    Instead of "Power usage" , lets see the "Energy usage" of the whole system, (that is powerused*time)
    I strongly suspect that SSD's will easily beat any HDD here.

Log in

Don't have an account? Sign up now